
ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BERLIN VERSION 10

Υz, the status code of this transaction:

Υg(σ, T ) ≡ Tg − g∗(80)

Υl(σ, T ) ≡ Al(81)

Υz(σ, T ) ≡ z(82)

These are used to help define the transaction receipt
and are also used later for state and nonce validation.

7. Contract Creation

There are a number of intrinsic parameters used when
creating an account: sender (s), original transactor4 (o),
available gas (g), gas price (p), endowment (v) together
with an arbitrary length byte array, i, the initialisation
EVM code, the present depth of the message-call/contract-
creation stack (e), the salt for new account’s address (ζ)
and finally the permission to make modifications to the
state (w). The salt ζ might be missing (ζ = ∅); formally,

(83) ζ ∈ B32 ∪ B0

If the creation was caused by CREATE2, then ζ 6= ∅.
We define the creation function formally as the function

Λ, which evaluates from these values, together with the
state σ and the accrued substate A, to the tuple containing
the new state, remaining gas, new accrued substate, status
code and output (σ′, g′, A′, z,o):

(84) (σ′, g′, A′, z,o) ≡ Λ(σ, A, s, o, g, p, v, i, e, ζ, w)

The address of the new account is defined as being the
rightmost 160 bits of the Keccak-256 hash of the RLP
encoding of the structure containing only the sender and
the account nonce. For CREATE2 the rule is different and
is described in EIP-1014 by Buterin [2018]. Combining
the two cases, we define the resultant address for the new
account a:

a ≡ ADDR(s,σ[s]n − 1, ζ, i)(85)

ADDR(s, n, ζ, i) ≡ B96..255

(
KEC
(
LA(s, n, ζ, i)

))
(86)

LA(s, n, ζ, i) ≡

{
RLP
(

(s, n)
)

if ζ = ∅
(255) · s · ζ · KEC(i) otherwise

(87)

where · is the concatenation of byte arrays, Ba..b(X) evalu-
ates to a binary value containing the bits of indices in the
range [a, b] of the binary data X, and σ[x] is the address
state of x, or ∅ if none exists. Note we use one fewer than
the sender’s nonce value; we assert that we have incre-
mented the sender account’s nonce prior to this call, and
so the value used is the sender’s nonce at the beginning of
the responsible transaction or VM operation.

The address of the new account is added to the set of
accessed accounts:

(88) A∗ ≡ A except A∗a ≡ Aa ∪ {a}

The account’s nonce is initially defined as one, the bal-
ance as the value passed, the storage as empty and the
code hash as the Keccak 256-bit hash of the empty string;
the sender’s balance is also reduced by the value passed.
Thus the mutated state becomes σ∗:

(89) σ∗ ≡ σ except:

σ∗[a] =
(
1, v + v′, TRIE(∅), KEC

(
()
))

(90)

σ∗[s] =

{
∅ if σ[s] = ∅ ∧ v = 0

a∗ otherwise
(91)

a∗ ≡ (σ[s]n,σ[s]b − v,σ[s]s,σ[s]c)(92)

where v′ is the account’s pre-existing value, in the event
it was previously in existence:

(93) v′ ≡

{
0 if σ[a] = ∅
σ[a]b otherwise

Finally, the account is initialised through the execution
of the initialising EVM code i according to the execution
model (see section 9). Code execution can effect several
events that are not internal to the execution state: the
account’s storage can be altered, further accounts can be
created and further message calls can be made. As such,
the code execution function Ξ evaluates to a tuple of the
resultant state σ∗∗, available gas remaining g∗∗, the re-
sultant accrued substate A∗∗ and the body code of the
account o.

(94) (σ∗∗, g∗∗, A∗∗,o) ≡ Ξ(σ∗, g, A∗, I)

where I contains the parameters of the execution environ-
ment, that is:

Ia ≡ a(95)

Io ≡ o(96)

Ip ≡ p(97)

Id ≡ ()(98)

Is ≡ s(99)

Iv ≡ v(100)

Ib ≡ i(101)

Ie ≡ e(102)

Iw ≡ w(103)

Id evaluates to the empty tuple as there is no input data
to this call. IH has no special treatment and is determined
from the blockchain.

Code execution depletes gas, and gas may not go below
zero, thus execution may exit before the code has come
to a natural halting state. In this (and several other) ex-
ceptional cases we say an out-of-gas (OOG) exception has
occurred: The evaluated state is defined as being the empty
set, ∅, and the entire create operation should have no effect
on the state, effectively leaving it as it was immediately
prior to attempting the creation.

If the initialization code completes successfully, a final
contract-creation cost is paid, the code-deposit cost, c,
proportional to the size of the created contract’s code:

(104) c ≡ Gcodedeposit × ‖o‖

If there is not enough gas remaining to pay this, i.e.
g∗∗ < c, then we also declare an out-of-gas exception.

The gas remaining will be zero in any such exceptional
condition, i.e. if the creation was conducted as the recep-
tion of a transaction, then this doesn’t affect payment of
the intrinsic cost of contract creation; it is paid regardless.
However, the value of the transaction is not transferred

4which can differ from the sender in the case of a message call or contract creation not directly triggered by a transaction but coming
from the execution of EVM-code


