ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER

over time, requires approximately the total compute power
of the trustworthy portion of the mining peers.

Thus we are able to define the block header validity
function V(H):

256
(56) V(H) = n<—=—Am=Hn A
Hy
Hy=D(H) A
H, <H A

H > P(H)Hl_

H; > 5000 A

H, > P(H)u, A
Hi=P(H)u,+1 A
[Hx|| < 32

where (n,m) = PoW(Hgn, Hn,d)
Noting additionally that extraData must be at most
32 bytes.

5. GAS AND PAYMENT

In order to avoid issues of network abuse and to sidestep
the inevitable questions stemming from Turing complete-
ness, all programmable computation in Ethereum is subject
to fees. The fee schedule is specified in units of gas (see Ap-
pendix ‘G for the fees associated with various computation).
Thus any given fragment of programmable computation
(this includes creating contracts, making message calls,
utilising and accessing account storage and executing op-
erations on the virtual machine) has a universally agreed
cost in terms of gas.

Every transaction has a specific amount of gas associ-
ated with it: gasLimit. This is the amount of gas which
is implicitly purchased from the sender’s account balance.
The purchase happens at the according gasPrice, also
specified in the transaction. The transaction is consid-
ered invalid if the account balance cannot support such
a purchase. It is named gasLimit since any unused gas
at the end of the transaction is refunded (at the same
rate of purchase) to the sender’s account. Gas does not
exist outside of the execution of a transaction. Thus for
accounts with trusted code associated, a relatively high
gas limit may be set and left alone.

In general, Ether used to purchase gas that is not re-
funded is delivered to the beneficiary address, the address
of an account typically under the control of the miner.
Transactors are free to specify any gasPrice that they
wish, however miners are free to ignore transactions as
they choose. A higher gas price on a transaction will there-
fore cost the sender more in terms of Ether and deliver
a greater value to the miner and thus will more likely be
selected for inclusion by more miners. Miners, in general,
will choose to advertise the minimum gas price for which
they will execute transactions and transactors will be free
to canvas these prices in determining what gas price to
offer. Since there will be a (weighted) distribution of min-
imum acceptable gas prices, transactors will necessarily
have a trade-off to make between lowering the gas price
and maximising the chance that their transaction will be
mined in a timely manner.

BERLIN VERSION 8

6. TRANSACTION EXECUTION

The execution of a transaction is the most complex part
of the Ethereum protocol: it defines the state transition
function Y. It is assumed that any transactions executed
first pass the initial tests of intrinsic validity. These include:

(1) The transaction is well-formed RLP, with no addi-
tional trailing bytes;
(2) the transaction signature is valid;

(4) the sender account has no contract code deployed
(see EIP-3607 by Feist et al.: [2021]);

(5) the gas limit is no smaller than the intrinsic gas,
go, used by the transaction; and

(6) the sender account balance contains at least the
cost, vo, required in up-front payment.

Formally, we consider the function Y, with T being a
transaction and o the state:

(57) o' =7Y(o,T)

Thus o’ is the post-transactional state. We also define

‘T8 to evaluate to the amount of gas used in the execution

ofa transaction, Tlto evaluate to the transaction’s accrued
log items and Y” to evaluate to the status code resulting
from the transaction. These will be formally defined later.

6.1. Substate. Throughout transaction execution, we ac-
crue certain information that is acted upon immediately
following the transaction. We call this the accrued transac-
tion substate, or accrued substate for short, and represent
it as A, which is a tuple:

(58) A = (As, A1, A, Ar, Ag, Ak)

The tuple contents include As, the self-destruct set: a
set of accounts that will be discarded following the trans-
action’s completion. A is the log series: this is a series of
archived and indexable ‘checkpoints’ in VM code execution
that allow for contract-calls to be easily tracked by onlook-
ers external to the Ethereum world (such as decentralised
application front-ends). Ay is the set of touched accounts,
of which the empty ones are deleted at the end of a transac-
tion. A, is the refund balance, increased through using the

zero from some non-zero value. Though not immediately
refunded, it is allowed to partially offset the total execution
costs. Finally, EIP-2929 by Buterin and Swende: [2020a]
introduced Aa, the set of accessed account addresses, and
Ak, the set of accessed storage keys (more accurately, each
element of Ak is a tuple of a 20-byte account address and
a 32-byte storage slot).

We define the empty accrued substate A° to have no
self-destructs, no logs, no touched accounts, zero refund bal-
ance, all precompiled contracts in the accessed addresses,
and no accessed storage:

(59) A° = (2,(),2,0,T, o)

where ‘7 is the set of all precompiled addresses.

