key, but the keys of all the users of his group. A verifier is convinced that the real signer is a member of the group, but cannot exclusively identify the signer. The original protocol required a trusted third party (called the Group Manager), and he was the only one who could trace the signer. The next version called a *ring signature*, introduced by Rivest et al. in [34], was an autonomous scheme without Group Manager and anonymity revocation. Various modifications of this scheme appeared later: *linkable ring signature* [26, 27, 17] allowed to determine if two signatures were produced by the same group member, *traceable ring signature* [24, 23] limited excessive anonymity by providing possibility to trace the signer of two messages with respect to the same metainformation (or "tag" in terms of [24]). A similar cryptographic construction is also known as a *ad-hoc group signature* [16, 38]. It emphasizes the arbitrary group formation, whereas group/ring signature schemes rather imply a fixed set of members. For the most part, our solution is based on the work "Traceable ring signature" by E. Fujisaki and K. Suzuki [24]. In order to distinguish the original algorithm and our modification we will call the latter a *one-time ring signature*, stressing the user's capability to produce only one valid signature under his private key. We weakened the traceability property and kept the linkability only to provide one-timeness: the public key may appear in many foreign verifying sets and the private key can be used for generating a unique anonymous signature. In case of a double spend attempt these two signatures will be linked together, but revealing the signer is not necessary for our purposes. ## 4.2 Definitions ## 4.2.1 Elliptic curve parameters As our base signature algorithm we chose to use the fast scheme EdDSA, which is developed and implemented by D.J. Bernstein et al. [18]. Like Bitcoin's ECDSA it is based on the elliptic curve discrete logarithm problem, so our scheme could also be applied to Bitcoin in future. Common parameters are: ``` q: a prime number; q=2^{255}-19; d: an element of \mathbb{F}_q; d=-121665/121666; E: an elliptic curve equation; -x^2+y^2=1+dx^2y^2; G: a base point; G=(x,-4/5); l: a prime order of the base point; l=2^{252}+27742317777372353535851937790883648493; \mathcal{H}_s: a cryptographic hash function \{0,1\}^* \to \mathbb{F}_q; \mathcal{H}_p: a deterministic hash function E(\mathbb{F}_q) \to E(\mathbb{F}_q). ``` ## 4.2.2 Terminology Enhanced privacy requires a new terminology which should not be confused with Bitcoin entities. ``` private ec-key is a standard elliptic curve private key: a number a \in [1, l-1]; public ec-key is a standard elliptic curve public key: a point A = aG; one-time keypair is a pair of private and public ec-keys; ```